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A brief survey of computational neuron dynamics models

▶ In 1952 Alan Hodgekin and Andrew Huxley developed a conductance-based model
of how action potentials in neurons are propagated.

▶ This is mathematically modeled using a continuous-time dynamical system
(ODEs), characterising the properties of excitable cells like neurons.

Figure: Schematic of a functional neuron1.

1NINDS. “Brain Basics: The Life and Death of a Neuron.” (2019)
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A brief survey of computational neuron dynamics models

▶ Specifically, their model explains the time dynamics of action potential propagation
in the squid giant axon from experiments.

Figure: Squid giant axon2.

2Wikipedia (2019)



A brief survey of computational neuron dynamics models

▶ The Hodgekin-Huxley model uses four state-variables, namely the membrane
potential (V ), and the three uncoupled variables (functions of voltage and time) n,
m, and h for the gated ion (sodium and potassium) channels.

Figure: Hodgekin and Huxley.

▶ Hodgekin and Huxley received the 1963 Nobel Prize in Physiology or Medicine for
this work3.

3Schwiening, Christof J. “A brief historical perspective: Hodgkin and Huxley”. J. Physiol. 590.Pt 11
(2012): 2571–2575.
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A brief survey of computational neuron dynamics models

▶ Since then, a notable number of neurodynamics models have been proposed.

▶ Popular ones include the FitzHugh-Nagumo model, the Morris-Lecar model, and
the Hindmarsh-Rose model.

▶ These models were driven by the need of reducing the complexity of the
Hodgkin-Huxley model, which would essentially still replicate the dynamics.

▶ Catherine Morris and Harold Lecar4 proposed a two-dimensional “reduced”
conductance-based description of the neuron dynamics.

▶ This model now has two state variables, namely the membrane potential (V ) and
the recovery variable (N), which is the conductance probability of Potassium
channel.

▶ This model exhibits both Class I and II excitability.

4Morris, C. and Lecar, H. “Voltage oscillations in the barnacle giant muscle fiber”. Biophys. J., 35,
193 (1981).
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A denatured Morris-Lecar neuron model

▶ A simplified variant of the Morris-Lecar neuron was introduced in their book by
Schaeffer and Cain, which has been dubbed as the denatured Morris-Lecar (dML)
model.

Figure: Book by Scheffer and Cain5.

5D. Schaeffer and J. Cain, “Ordinary differential equations: Basics and beyond”. (Springer, 2018).



A denatured Morris-Lecar neuron model

▶ The model equations are
ẋ = x2(1− x)− y + I,

ẏ = Aeαx − γy.

▶ These models are computationally efficient compared to the conductance-based
models.

▶ Here, x is the voltage-like variable with a cubic nonlinearity, and y represents the
corresponding recovery variable.

▶ The nonlinear term in x demonstrates positive feedback to neurons corresponding
to self-reinforcement, leading to neuron firing.

▶ The exponential term in y models a negative feedback, corresponding to the
dynamics of the refractory period.
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A denatured Morris-Lecar neuron model

▶ External stimulus current I can be both positive and negative.

▶ Other parameters A, α, and γ are all positive constants.
▶ Parameter γ is the excitability and together with A determines the kinetics of y.
▶ Whereas α is a control parameter influencing the exponential growth rate of y.
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A denatured Morris-Lecar neuron model
▶ The dML model is closely comparable to a FitzHugh-Nagumo type neuron model

which can be written as
ẋ = x2(1− x)− y + I,

ẏ = Ax− γy.

▶ Both models have the same x-nullclines with differing y-nullclines. The y-nullclines
curve upward pertaining to the exponential growth term Aeαx, whereas for FHN
the y-nullclines are straight lines pertaining to the linear term Ax.
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Figure: For parameter values A = 0.0041, α = 5.276, γ = 0.315, and I = 0.012347.
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Qualitative analysis
▶ The equilibrium can be computed from the transcendental equations6

x2(1− x)− y + I = 0,

Aeαx − γy = 0,

by solving for x.

▶ We can write I as a function of x, y:

I∞(x) =
A

γ
eαx − x2(1− x).
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6I. Ghosh, H.O. Fatoyinbo. “Fractional order induced bifurcations in Caputo-type denatured
Morris-Lecar neurons”. arXiv preprint arXiv:2502.17798 (2025).
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Qualitative analysis

▶ I∞(x) is Ck smooth,

▶ limx→−∞ I∞(x) = −∞, limx→∞ I∞(x) = ∞, and
▶ I∞(x) has two extrema, one maximum at xmax and one minimum at xmin.
▶ Let us consider Imax = I∞(xmax) and Imin = I∞(xmin).
▶ if I < Imin or I > Imax, the dML will have a unique equilibrium point (See (a),

(b)),
▶ if I = Imin or I = Imax, the dML will have two equilibrium points (See (c), (d)),
▶ if I ∈ (Imin, Imax), it has three equilibrium points (See (e)).
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Qualitative analysis
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Qualitative analysis

▶ The Jacobian matrix for the dML at an equilibrium point (x∗, y∗) is

J =

[
x∗(2− 3x∗) −1
αAeαx

∗ −γ

]
.

▶ Its trace and determinant are respectively given by

τ(x∗) = x∗(2− 3x∗)− γ,

δ(x∗) = −γx∗(2− 3x∗) + αAeαx
∗
.

▶ A saddle-node bifurcation occurs when δ(x∗) = 0.
▶ A Hopf bifurcation occurs when τ(x∗) = 0 and δ(x∗) > 0.
▶ These codimension-one bifurcation computations require hand calculations and

might not always be analytically tractable.
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Numerical Bifurcation Analysis

Figure: (a) SNLC: Saddle Node Limit Cycle, (b) Imutan: a mutual annihilation bifurcation
occurs at I = Imutan. See D. Schaeffer and J. Cain,(Springer, 2018).



Numerical Bifurcation Analysis

Figure: A codimension-two bifurcation diagram of the dML model in the(I, γ)-plane7.

7H.O. Fatoyinbo, et al. “Numerical bifurcation analysis of improved denatured morris-lecar neuron
model”. In 2022 international conference on decision aid sciences and applications (DASA) (pp.
55-60). IEEE (2022).



Effect of Electromagnetic Flux
▶ The dML model is perturbed where the membrane potential x is subjected to an

electromagnetic flux term ϕ.

▶ This technique makes the model more physically realistic by implementing complex
dynamics.

▶ This has practical applications and relevance in scenarios like deep brain simulation
(DBS), and calls for an extensive mathematical modeling.

▶ DBS involves putting an electrode deep inside the brain and treating people with
mobility conditions.

7Source: https:
//www.mayoclinic.org/tests-procedures/deep-brain-stimulation/about/pac-20384562

https://www.mayoclinic.org/tests-procedures/deep-brain-stimulation/about/pac-20384562
https://www.mayoclinic.org/tests-procedures/deep-brain-stimulation/about/pac-20384562
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Effect of Electromagnetic Flux

▶ The model is improved to a three-dimensional version with ϕ(t) as the new
dynamical variable

ẋ = x2(1− x)− y + I + kρ(ϕ)x,

ẏ = Ax− γy,

ϕ̇ = k1x− k2ϕ+ ϕext.

▶ Here k is the feedback gain,
▶ function ρ(ϕ) = α+ 2βϕ2 is the electromagnetic effect on the action potential,
▶ ϕ is the magnetic flux across the cell membrane,
▶ parameter α and β are the memory conductances, and
▶ ϕext is the external magnetic flux.
▶ The external current can be modeled as a periodic function I = I0 sin(ωt), with I0

as the current amplitude and ω is the angular frequency.
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▶ The external periodic current produces multiple-mode bursting activities.



A slow-fast variant

▶ The slow-fast version of the dML also introduced by Schaeffer and Cain is given by

ẋ = x2(1− x)− y + I,

ẏ = Aeαx − γy,

İ = ε(I ′(x)− I),

▶ where

I ′(x) =
1

60

[
1 + tanh

(
0.05− x

0.001

)]
is the smoothed-out version of a step function.

▶ the parameter ε is a small perturbation parameter that separates the time scales
and is sometimes referred to as the time-scale parameter.
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A slow-fast variant
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Figure: We observe a periodic bursting behavior. Here A = 0.0041, α = 5.276, γ = 0.315, and
ε = 0.001. The initial condition x(0) is sampled uniformly from the range [−1, 1]. Furthermore
(y(0), I(0)) = (0.1, 0.012347).



A slow-fast variant

▶ Neurons manifest repeated rapid bursting with quiet intervals.

▶ For a certain range of the current I, Shaeffer and Cain argued that the dynamics
would consist of both a stable periodic solution and a stable equilibrium point.

▶ This bistability ultimately leads to bursting.
▶ This would be possible if I were allowed to vary slowly in time.
▶ This kind of bursting is classified as fold/homoclinic type8 where the transition

from the resting state to the spiking limit cycle occurs via a saddle-node (fold)
bifurcation and from the spiking state to the resting state via a saddle homoclinic
orbit bifurcation.

8E. Izhikevich, “Dynamical systems in neuroscience”. (MIT press, 2007).
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Fold/homoclinic burster



Qualitative analysis

▶ To compute X∗, the first step requires solving the nonlinear transcendental
equation given by,

x∗2 (1− x∗)− A

γ
eαx

∗
+ I ′(x∗) = 0,

which is analytically intractable and can only be solved using a numerical solver.
▶ The Jacobian of the system (1) is given by

J =

x(2− 3x) −1 1
αAeαx −γ 0
L(x) 0 −ε

 .



Qualitative analysis
▶ Here

τ(x) = x(2− 3x)− γ − ε

is the trace of J ,

σ(x) = γε− (γ + ε)x(2− 3x) + αAeαx − L(x)

is the second trace of J , and

δ(x) = x(2− 3x)γε− εαAeαx + γL(x)

is the determinant of J .

▶ Note that

L(x) = −50ε

3
sech2 [50 (1− 20x)] .

▶ The eigenvalues µi, i = 1, . . . , 3 can be evaluated from J at the equilibrium point
by solving the third order characteristic equation P3(µ) = 0
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Codimension-one bifurcation diagram

Figure: Codimension-one bifurcation diagram of the fast subsystem with superimposition of the
periodic bursting of the slow-fast system. Solid [dashed] curves correspond to stable [unstable]
solutions and magenta curves are limit cycles. HB, LP, SHOB, and LPC represent Hopf
bifurcation, saddle-node bifurcation of an equilibrium, saddle-homoclinic orbit bifurcation and
saddle-node bifurcation of cycles respectively. Here A = 0.0041, α = 5.276, γ = 0.315, and
ε = 0.001 with the initial condition as (x(0), y(0), I(0)) = (0.5, 0.1, 0.012347).



Neuron Synapse

▶ Neurons communicate with each other through synapses.

▶ Synapses convert an electrical signal propagated by a neuron into a chemical signal
in the form of neurotransmitter release.

▶ The neurotransmitter can either excite or inhibit the second neuron from firing its
own action potential9.

9Source: https:
//qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses


Neuron Synapse

▶ Neurons communicate with each other through synapses.
▶ Synapses convert an electrical signal propagated by a neuron into a chemical signal

in the form of neurotransmitter release.

▶ The neurotransmitter can either excite or inhibit the second neuron from firing its
own action potential9.

9Source: https:
//qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses


Neuron Synapse

▶ Neurons communicate with each other through synapses.
▶ Synapses convert an electrical signal propagated by a neuron into a chemical signal

in the form of neurotransmitter release.
▶ The neurotransmitter can either excite or inhibit the second neuron from firing its

own action potential9.

9Source: https:
//qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses


Two-coupled dML neurons

▶ Two connected neurons can be mathematically modeled using a directional
coupling strategy.

▶ In our work10 a linear coupling replicating a bidirectional electrical synapse is
utilized. The neurons are considered identical.

dML dML
θ

θ

▶ The model equations are

ẋ1 = x21(1− x1)− y1 + I1 + θ(x2 − x1), ẏ1 = Aeαx1 − γy1, İ1 = ε(I ′(x1)− I1),

ẋ2 = x22(1− x2)− y2 + I2 + θ(x1 − x2), ẏ2 = Aeαx2 − γy2, İ2 = ε(I ′(x2)− I2).

10I. Ghosh, H.O. Fatoyinbo, and S.S. Muni. “Comprehensive analysis of slow-fast denatured
Morris-Lecar neurons”. Phys. Rev. E 111.4 (2025): 044204.
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Time series & phase portraits
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Time series & phase portraits
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Codimension-one bifurcation diagram

Figure: Codimension-one bifurcation diagram of the coupled fast subsystem. Solid [dashed]
curves correspond to stable [unstable] solutions and red curves are limit cycles. HB, LP, and
BP represent Hopf bifurcation, saddle-node bifurcation of an equilibrium and branch point
respectively.



The 0− 1 test for detecting chaos

▶ The 0− 1 test11 is applied to the time series data of x1, x2 generated from the
simulation.

▶ For a time series data denoted by {x(n), n = 1, . . . ,M}, the first step in the 0− 1
test is the computation of the two translation variables pe and qe (with e ∈ (0, 2π))

pe(n) =

n∑
k=1

x(k) cos(ek),

qe(n) =

n∑
k=1

x(k) sin(ek),

▶ The pe vs. qe plot will typically be bounded for regular dynamics or will
approximately behave like a two-dimensional diffusive Brownian motion with
evolution rate

√
n and zero drift for chaos.

11G. Gottwald and I. Melbourne, On the implementation of the 0–1 test for chaos, SIAM J. Appl.
Dyn. Syst. 8, 129 (2009).



The 0− 1 test for detecting chaos

▶ The 0− 1 test11 is applied to the time series data of x1, x2 generated from the
simulation.

▶ For a time series data denoted by {x(n), n = 1, . . . ,M}, the first step in the 0− 1
test is the computation of the two translation variables pe and qe (with e ∈ (0, 2π))

pe(n) =

n∑
k=1

x(k) cos(ek),

qe(n) =

n∑
k=1

x(k) sin(ek),

▶ The pe vs. qe plot will typically be bounded for regular dynamics or will
approximately behave like a two-dimensional diffusive Brownian motion with
evolution rate

√
n and zero drift for chaos.

11G. Gottwald and I. Melbourne, On the implementation of the 0–1 test for chaos, SIAM J. Appl.
Dyn. Syst. 8, 129 (2009).
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The 0− 1 test for detecting chaos

▶ This can be inferred from the mean square displacement, given by

me(n) =
1

M

M∑
i=1

[
{pe(i+ n)− pe(i)}2 + {qe(i+ n)− qe(i)}2

]
.

▶ The asymptotic growth rate is given by

ke = lim
n→∞

logme(n)

log n
.

▶ ke ∼ 1 indicates chaos and ke ∼ 0 indicates regularity.
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Sample entropy: for measuring complexity

▶ The sample entropy quantifies the complexity of the time series.

▶ This is built on the algorithm put forward by Richman and Moorman12.
▶ A higher sample entropy implies higher complexity

12J. Richman and J. Moorman, Physiological time- series analysis using approximate entropy and
sample entropy, Am. J. Physiol. Heart Circ. Physiol. 278 (2000).
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Cross-correlation coefficient for synchronization
▶ We can quantify the collective behaviour of the dimer.

▶ This is advocated by the synchronization measure.
▶ Pearson’s correlation coefficient can be adopted to come up with the

cross-correlation coefficient.
▶ The cross-correlation coefficient between node 1 and 2 given by

Γ =
⟨x̃1(t)x̃2(t)⟩√
⟨x̃1(t)2⟩⟨x̃2(t)2⟩

,

▶ where x̃i(t) = xi(t)− ⟨xi(t)⟩ is the variation of the dynamical variable x at index i
from its mean.

▶ The angular brackets ⟨·⟩ signify the mean over time.
▶ When |Γ| = 1, it means both the nodes are completely synchronized with each

other.
▶ When Γ = 1 it means both the nodes are in phase and completely synchronized,

whereas Γ = −1 represents anti-phase synchrony.
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Numerics
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Fractional order version
▶ Now we model the dML neuron as a set of Caputo-type fractional order differential

equations. Fractional-order systems incorporate memory effects.

▶ Lundstrom et al.13 argued that there exists a multiple time scale adaptation in
single rat neocortical neurons which is consistent with fractional order differential
equations.

▶ Anastasio14 suggested that the oculomotor integrator in the brain that controls eye
movements, might be fractional-order.

▶ The model equations are
CDβ

0x = x2(1− x)− y + I,

CDβ
0 y = Aeαx − γy.

▶ Here C stands for “Caputo” and β ∈ (0, 1] is the order of the integral, also known
as the memory index.

13B. Lundstrom, M. Higgs, W. Spain, A. Fairhall. “Fractional differentiation by neocortical pyramidal
neurons”. Nat. Neurosci. 11, 1335–1342 (2008).

14T. Anastasio. “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons”. Biol.
Cyber. 72, 69–79 (1994).
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Qualitative analysis
Theorem
Suppose

i) x∗(2− 3x∗)− γ > 0, and
ii) −γx∗(2− 3x∗) + αAeαx

∗
< 2

√
−γ − x∗(2− 3x∗) cos(βπ2 ).

Then an equilibrium point (x∗, y∗) of the fractional order system is asymptotically
stable.

Theorem
Suppose I ∈ (Imin, Imax). Then this branch of equilibrium points is completely unstable.

▶ From the above theorem we can directly see that δ(x∗) < 0 implies one of the two
eigenvalues is positive and the other negative, meaning the equilibrium point on
this branch is a saddle, irrespective of the fractional order β ∈ (0, 1].

Theorem
Suppose I = Imin or I = Imax. Then the fractional order system has a saddle-node
bifurcation.



Qualitative analysis

Theorem
Suppose I < Imin or I > Imax. Then

i) the stability of an equilibrium point of the system depends on the sign of τ(x∗),
ii) for τ(x∗) ≥ 0 the equilibrium is asymptotically stable if and only if the order

β < β∗ =
2

π
cos−1

(
min

(
1,

−γ + x∗(2− 3x∗)

2
√

αAeαx∗ − γx∗(2− 3x∗)

))
.



Phase portraits
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A crude bifurcation diagram
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Discussion/Future work

▶ We aim to consider a higher-order network of the neurons (more realistic)

▶ We also aim to study pattern formation in a diffusively coupled chain of neurons
▶ Delay-induced coupling is an interesting avenue to explore.
▶ An adaptive coupling strategy based on the Hebbian learning rule is justifiable.
▶ It would be intriguing to investigate the dynamical behaviour of the coupled

neurons as a game-theoretic model.
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The End

Thank you! Questions?


